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Abstract—Accurate channel estimation is required for various
multiple input multiple output (MIMO) implementations in
the next-generation wireless communication systems. Recently,
Artificial Intelligence (AI) techniques have been introduced for
channel state information (CSI) processing in channel estimation
because of their accuracy and relatively low complexity compared
to the traditional approaches. However, these AI-supported CSI
processing models are usually developed with a fixed training
dataset. Therefore, the performance of such approaches cannot
be guaranteed in new environments. This paper focuses on
enhancing AI-supported channel estimation methods with a 2-
stage open set recognition scheme. New environments are detected
in the first stage by identifying different characteristics between
testing and training data. In the second stage, new data is
filtered and further categorized to each individual environment.
Simulation results using four different environment settings
demonstrate that the proposed method can greatly enhance the
usability of AI-supported channel estimation.

I. INTRODUCTION

The next-generation wireless technologies play an impor-
tant role in the realization of futuristic applications due to
the numerous benefits such as higher throughput, massive
interconnectivity, and ultra-low latency [1]. Multiple-input
multiple-output (MIMO) is one of the emerging technologies
supporting the next-generation wireless networks [2]. How-
ever, for the successful realization of MIMO, it is imper-
ative to estimate the channel state information (CSI) with
higher accuracy. In a traditional frequency-division duplex
(FDD) system, CSI is estimated by reconstructing the channel
information feedback from user equipment (UE) based on
pilot signals sent by the base station (BS) [3]. The multi-
step channel estimation process introduces challenges such
as higher computational complexity and time. Due to the
virtue of channel reciprocity, the channel information can be
derived with reduced computations in the time-division duplex
(TDD) systems [3]. Regardless of the methodologies adopted
by the system, it is imperative to ensure accurate computation
of channel information in any environmental conditions and
scenarios. In this work, we focus on enhancing Artificial
Intelligence (AI) supported CSI feedback processing methods
with Open Set Recognition (OSR) for an FDD system.

Recently, AI has been introduced to support CSI processing
in channel estimation [4–10]. In specific, CsiNet was one
of the first deep-learning approaches for CSI processing [4].

Subsequent development of CsiNet has been based on Long-
Short-Term Memory (LSTM) [5], Generative Adversarial
Network (GAN) [6], and transformer [7, 8]. Moreover, other
approaches such as CRNet [9] and MRFNet [10] have been
developed to enhance CSI feature extraction across multiple
resolutions and recover features with different receptive fields
for CSI processing in an FDD system. However, most of those
existing works assume the same dataset for training and testing
their deep-learning models for CSI processing. Therefore, the
performance of those approaches cannot be guaranteed in a
wireless environment different from the initial dataset.

In this paper, we propose to tackle this issue and en-
hance AI-supported CSI processing methods by with a 2-
stage approach. First, alert when the model is deployed in
unknown environments. Second, data corresponding to each
individual environment should be collected and labeled au-
tonomously. Broadly speaking, identifying unknown/unlabeled
data in an unsupervised manner is closely related to the Open
Set Recognition (OSR) problem [11]. For example, authors
in [12] proposed a method that uses class-conditioned auto-
encoders to do OSR. Authors in [13] use a few data-trained
auto-encoder to classify open-set audio. However, these solu-
tions are more commonly associated with classification and
recognition. Hence, these solutions cannot be applied directly
to AI-supported CSI processing methods. Nonetheless, we
borrow the concept of OSR to address the two aforementioned
challenges in this paper. The first challenge can be addressed
by accessing the mean-squared error (MSE) value of the
testing data. Generally speaking, the MSE results from an
unknown environment should be higher than that during the
training phase of an AI model. Hence, a drastic increase in
MSE can indicate the presence of unknown environments. To
address the second challenge, we proposed a method based
on one-epoch transfer learning. Transfer learning enhances a
pre-trained model in one domain by leveraging information
from a closely related domain. Instead of enhancing an AI-
assisted CSI processing model, the transfer learning process
only includes 1 epoch, which is lightweight and effective in
separating the data from multiple environments. Evaluation
is conducted using simulated data in four different wireless
environments. Compared to an existing method, the 2-stage
approach proposed in this work can quickly detect unknown



environments and correctly collect and label data from each
individual environment.

The remainder of the paper is organized as follows. Sec-
tion II describes the overview of the proposed framework.
Section III presents the detailed methods of solving the
problem, while Section IV elicits evaluation results. Section V
concludes the paper.

II. STUDIED NETWORK SYSTEM AND PRELIMINARIES

The proposed work focuses on AI-supported CSI processing
for an Orthogonal Frequency-Division Multiplexing (OFDM)
based FDD MIMO system. Given a pilot sequence, the re-
ceived signal at kth subcarrier is written as

yk = ĥ
H

k vk + wk, (1)

where ĥ
H

k is the channel frequency response, and vk is the
precoding vector [2]. The channel can be estimated using the
Least-Square (LS) method:

ĤLS =
1

XP
YP , (2)

where ĤLS refers to the estimated channel matrix using LS
method, XP , and YP refers to the original and received
pilots respectively. Without loss of generality, an auto-encoder
structure is assumed in a given AI-supported CSI processing
method. As shown in Fig. 1, an encoder is deployed on the
User Equipment (UE) side, and a decoder is deployed on the
BS side, respectively. The encoder is to compress the estimated
channel information ĤLS into codeword S. Once sent back to
the BS, codeword S can reconstruct the CSI by the decoder.
Note that the studied system assumes practical implementation
of such CSI processing methods, supporting multiple UEs
from different yet new environments to the initialized model.
For better illustration, the notations used in the rest of this
work are summarized in Table I.
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Fig. 1: Overview of studied MIMO system with AI-supported
CSI processing.

However, for improved performance and usability of such
AI-based CSI estimation techniques, it is imperative to un-
derstand two main considerations. First, the compatibility of
the AI model with any given environment must be accessed.
Second, categorizing the new or unknown data from a different
environment encountered autonomously.

TABLE I: Notations used in this work.

Notation Remarks
Nt # Transmit antennas
Nr # Receive antennas
k Subcarrier
yk Received signal at the kth subcarrier
fc Center frequency
ĥH
k Channel frequency response

ĤLS Estimated channel matrix using LS
XP Pilot sequences
YP Received pilots
vk Precoding vector
xk Transmitted symbol
X Piece of CSI data with n elements
X̂ Predicted CSI data
S Codeword
NS1 # of the local minima in stage 1
NS2 # of the local minima in stage 2
Nnew env # of the new founded environments
f(x) estimated density function
n # of data points
G Gaussian Kernel
h bandwidth of the KDE

III. 2-STAGE APPROACH FOR CSI PROCESSING OSR

An overview of the proposed 2-stage OSR method is
depicted in Fig 2. The first stage is to identify whether the
AI-supported CSI processing model is being used in unknown
environments. The second stage is to further label each in-
dividual environment and collect corresponding datasets. For
better illustration, it is assumed that the ground truth of CSI
can be obtained and transferred to the BS, e.g., via traditional
methods.
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Fig. 2: Overview of the proposed 2-stage OSR method.

A. Stage 1 - Identify Unknown Environments

Given an AI-supported CSI processing model, its perfor-
mance on channel reconstruction can be evaluated by the MSE
metric, computed as:

MSE =
1

n

n∑
i=1

(Xi − X̂i)
2, (3)



TABLE II: Settings of the four tested environments.

Indoor1 Indoor2 Outdoor1 Outdoor2
# of Paths 3 7 6 2
Path delays [0 3e-6 5e-6] [0 3e-4 5e-5 7e-5 1e-6 9e-4 2e-7] [0 2e-7 8e-8 1.2e-6 2.3e-6 3.7e-6] [0 2.5e-5]
Average path gains [0 -1 -2] [0 0.2 0.5 0.1 -3 -1.2 -1] [0 -0.9 -4.9 -8 -7.8 -23.9] [0 -3]
Fading distributions Rayleigh Rayleigh Rician Rician
Fading technique Filtered Gaussian noise Sum of Sinusoids Filtered Gaussian noise Sum of Sinusoids

where X is a piece of CSI data with n elements and X̂ is the
predicted CSI data from the model, which has the same shape
as X . If higher MSE values are observed compared to that
during the training phase, the model is either under-trained or
not trained with respect to the testing environment. In other
words, a clear separation in MSE distributions can alert the
presence of unknown environments in this stage. Technically,
Kernel Density Estimation (KDE) is implemented to find the
separations. KDE is a non-parametric way to estimate the
probability density function (PDF) of a random variable [14].
This method is particularly useful for smoothing out the data
distribution and is often employed when the underlying data
distribution is unknown. KDE works by placing a continuous
kernel function at each data point and then averaging these
kernels to produce a smooth estimate of the density. The
estimated density function in this study can be expressed as:

f(x) =
1

nh

n∑
i=1

G

(
MSE − MSEi

h

)
. (4)

By calculating the local minima of the KDE, the MSE dis-
tributions can be separated. However, the MSE distributions
among different unknown environments may not be clearly
separated. Hence, newly collected data cannot be labeled cor-
rectly according to their originating environments according
to the results in stage 1.

B. Stage 2 - Label Each Individual Environment
A one-epoch transfer learning process is implemented in

stage 2 to provide clear separation among different unknown
environments. In particular, the one-epoch transfer learning
can result in an MSE distribution that is different from that of
the previous ones. It may be noted here that transfer learning is
utilized as a tool to categorize the data in this work. The same
KDE method is applied after the 1-epoch transfer learning to
separate the MSE distributions. Note that the local minima
in stage 1 (NS1) and stage 2 (NS2) can be vastly different.
The higher count of the local minimum points in either stage
can be interpreted as the number of unknown environments.
Note that in stage 1, since the initial environment of the
training data is included and its corresponding MSE values are
much smaller, the number of the local minima is at least one
with the presence of unknown environments. Therefore, when
comparing the number of local minima in stage 2, the number
of local minima in stage 1 should decrease by one. The total
number of unknown environments is the maximum number of
local minima between stage 1 and stage 2 results plus 1. The
data can then be labeled according to the corresponding MSE
distributions separated by the local minima points.

Algorithm 1 Proposed 2-stage OSR method.

Input: Multiple environments data
Output: Nnew env

Initialisation :
1: A pre-trained CSI feedback model

Stage 1
2: Input all data into the model
3: KDE fitting MSE distribution
4: number of local minima NS1

5: Filter the data MSE ≤ the smallest minima
Stage 2

6: Input existing data into the model
7: KDE fitting MSE distribution
8: number of local minima NS2

9: if NS1 − 1 ̸= NS2 then
10: Nnew env = max(NS1 − 1, NS2) + 1
11: end if
12: if NS1 − 1 = NS2 then
13: Cross reference between two stages
14: end if
15: return Nnew env

IV. EVALUATION RESULTS

A. Evaluation Settings and Dataset

Evaluation is conducted on a synthetically generated dataset
on a 32 × 32 MIMO system pertaining to four different
environments using MATLAB. Detailed settings for the four
environments are summarized in Table II. All four envi-
ronment simulations have the same center frequency at 2.4
GHz and signal-to-noise ratio (SNR) at 15 dB. Frequency-
independent parameters such as the number of paths, path
delays, and path gains are collected from the different studied
environments in a static condition. The other necessary system
settings are summarized in Table III. For each environment,
55 OFDM symbols are generated with a symbol length of
217. For each environment, 50 OFDM symbols are allocated
for training, and 5 OFDM symbols are designated for testing.
Thus, the number of training samples for each environment is
10850, and 1085 are testing samples. Each channel response
is originated as a two-dimensional complex matrix with the
shape of 32 × 32. It is then decomposed into its real and
imaginary components and forms a three-dimensional matrix
with dimensions 2 × 32 × 32. CsiNet is chosen as the AI-
supported CSI processing method for the evaluation. CsiNet
is an auto-encoder approach. In the encoder design, the first
layer is a convolution layer, followed by a batch norm layer
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(a) Results of stage 1 processing.
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(b) Results of stage 2 processing.
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(c) Separation results from existing method.

Fig. 3: The MSE distributions of results from AI model initialized using Indoor1 dataset.
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(a) Results of stage 1 processing.
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(b) Results of stage 2 processing.
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(c) Separation results from existing method.

Fig. 4: The MSE distributions of results from AI model initialized using Indoor2 dataset.
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(a) Results of stage 1 processing.
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(b) Results of stage 2 processing.
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Fig. 5: The MSE distributions of results from AI model initialized using Outdoor1 dataset.
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Fig. 6: The MSE distributions of results from AI model initialized using Outdoor2 dataset.

TABLE III: Other settings for evaluation.

Parameter Settings
Nt 32
Nr 32
fc 2.4
Environments Indoor1/Indoor2/Outdoor1/Outdoor2
SNR (dB) 15
Fading model Rayleigh/Rican
# training samples 10,850 per testing scenario
# testing samples 1,085 per testing scenario

and a leaky Rectified Linear Unit (ReLu) layer. Finally, a
linear layer compresses the output into a lower dimension. In
the decoder design, the first layer is a fully connected linear
layer, followed by two Residual Conv Units in RefineNet [15]
with three convolution layers. A batch normalization layer, a
convolution layer, and a leaky ReLu activation layer are used
to obtain the final result. Please note that the evaluation can be
extended to other methods straightforwardly. Table IV shows
the performance of the CsiNet on the initial environments.
These MSE values are used as benchmarks in the 2-stage
approaches.

TABLE IV: MSE for initial environments (dB).

Indoor1 Indoor2 Outdoor1 Outdoor2
Average MSE -42 -32.5 -39.6 -45.5
Min MSE -44 -34 -41.3 -46.8
Max MSE -40.1 -31.3 -38.5 -44.7

B. Evaluation Results of Data Separation

Fig. 3(a), Fig. 4(a), Fig. 5(a) and Fig. 6(a) show the stage 1
MSE distributions, the KDE fitting curve, and the calculated
local minima under the four environments, respectively. As
we can see, the unknown environments are detected in stage 1
processing as local minima from the KDE curve can be found
between the lower MSE values from the training environment
and the higher MSE values from the testing environments.
However, the numbers of local optima do not necessarily

represent the number of unknown environments from stage 1
processing. The results from stage 2 processing are shown in
Fig. 3(b), Fig. 4(b), Fig. 5(b) and Fig. 6(b), respectively. As we
can see, the MSE distributions from unknown environments
are randomized further due to the 1-epoch transfer learning.
Based on Alg. 1, the corresponding NS1, NS2 and Nnew env

can be found and are listed in Table V. As we can see, all
three unknown environments can be identified from the 2-
stage approach. Moreover, data labeling can be done perfectly
when using Indoor2, Outdoor1, or Outdoor2 as the initial envi-
ronment. When using Indoor1 as the initial environment, data
from Outdoor1 and Indoor2 cannot be separated completely.
Nonetheless, the mislabeling data only include the few ones
in the overlap area, as shown in Fig. 3(b).

TABLE V: Detection results of unknown environments.

Indoor1 Indoor2 Outdoor1 Outdoor2
NS1 2 1 3 3
NS2 2 2 1 0
Nnew env 3 3 3 3
Stage chosen
for separation 2 2 1 1

An existing method intended to detect CSI data from
unknown environments [16] is implemented for comparison.
The existing method is based solely on transfer learning.
As shown in Fig. 3(c), Fig. 4(c), Fig. 5(c) and Fig. 6(c),
the existing method can barely separate the unknown en-
vironments from each other. Therefore, the data cannot be
labeled correctly. Moreover, the extensive transfer learning
process in the existing method is more complicated and time-
consuming compared to the proposed 2-stage process with 1-
epoch transfer learning.

C. More Discussions

The proposed transfer learning-based channel classification
framework is significant for various reasons. To begin with,
this method paves the way towards efficient categorization



of channel samples from different environments. Though the
principle of channel estimation based on CSiNet is the same
regardless of environments and system settings, contamination
of testing datasets with unknown samples results in reduced
performance and robustness of the system. Therefore, it is
necessary to eliminate the unfamiliar samples. And these unfa-
miliar samples are not useless. Categorizing them can provide
data for training models to adapt to their channels. Finally,
our framework achieves high accuracy in the unsupervised
categorization of unfamiliar data.
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Fig. 7: The CSI reconstruction performance of the testing AI
model before and after the 2-stage process.

Please note that the purpose of the 2-stage method is to
provide an autonomous approach for identifying and labeling
data from unknown environments so that an AI-supported CSI
processing model can be enhanced, e.g., through re-training
or extensive transfer learning. Therefore, the given AI model
should not be used directly for channel estimation after the 2-
stage process. As shown in Fig. 7, the performance in terms of
CSI reconstruction MSE degrades in all four testing scenarios
after the 1-epoch transfer learning.

V. CONCLUSION AND FUTURE WORKS

In this work, a novel approach based on the concept of
OSR is proposed to filter out and categorize the unfamiliar
CSI data from different environments based on MSE and
transfer learning. The approach was validated using synthet-
ically generated MATLAB data pertaining to four different
environments. The evaluation results highlight the ability of

our approach to assist the model in dealing with unknown
data. In future work, we will focus on the integration of the
unknown wireless environment detection as well as AI model
updates for real-time CSI processing.
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