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Abstract—Network Traffic Classifiers (NTC) are critical for
analyzing and categorizing traffic to ensure network perfor-
mance, security, and quality of service. Federated learning (FL)
has been adopted as a privacy-preserving solution for training
these classifiers by enabling collaborative model updates without
sharing raw traffic data. However, FL can be vulnerable to white-
box inference attacks, where adversaries with access to model
parameters and gradients can reconstruct the traffic features.
Application updates will introduce the changed traffic data, which
has a different distribution from the traffic data before. In this
paper, we propose a data reconstruction attack by exploiting such
vulnerability in FL-based NTC design. Using only public dataset
and a Generative Adversarial Network (GAN), the proposed
attack can successfully reconstruct data pieces from private
datasets. Various metrics for similarity test are applied in the
evaluation to validate the reconstructed dataset. These findings
highlight the need for robust defenses to protect data privacy in
network traffic data sharing for NTC development.

I. INTRODUCTION

With the advancement of communication technologies, the
number of network users has been steadily increasing, leading
to challenges in balancing network traffic and bandwidth.
Network Traffic Classifier (NTC) has emerged as an effective
method to enhance network management and improve the
quality of service (QoS) [1-3]. It allows Internet Service
Providers (ISPs) to prioritize specific types of traffic, enabling
them to offer varying levels of QoS to their users. Deep
learning has been proven to be a powerful tool for improving
the accuracy of traffic classification. Collecting and sharing
network traffic data is crucial to such NTC development.
Especially since the characteristics of network traffic data
can change significantly when applications are updated, such
changes can lead to a mismatch between the traffic patterns
represented in the training data and the real-world traffic
encountered post-update [2, 4]. Therefore, NTC needs to be
updated frequently with new data from users.

However, privacy concerns arise when developing NTCs
that use private data. Recent advancements in distributed
machine learning, particularly federated learning (FL), provide
a promising solution for users to participate in updating NTC
without sharing raw datasets. By eliminating the need to
upload user data to a central server, its goal is to preserve
user privacy [5]. However, despite its privacy-preserving goals,
FL is not impregnable due to the collaborative nature of
the framework. For example, one of the most concerning
vulnerabilities in FL is its susceptibility to adversarial attacks,

including data reconstruction attacks, poisoning attacks, and
inference attacks [6].

In this work, we explores if federated NTC can truly protect
private dataset by proposing a data reconstruction attack from
a local client. The main focus is on the white-box inference
attack, a scenario where an adversary has complete knowledge
of the federated learning model, including its parameters and
architecture. The attacker can take on different roles:

e As the central server: The attacker can observe the
updates of the clients and manipulate the global model
by controlling the aggregation process.

e As a participating client: The attacker knows the global
model parameters and can intentionally upload malicious
updates to influence the global model.

In both cases, the attacker can leverage their understanding of
the model to disrupt or compromise the federated learning
process in an active way, either by directly modifying the
global parameters or by injecting incorrect updates to degrade
model performance. This level of access allows the attacker
to exploit the collaborative learning process to infer sensitive
information about private client data [7]. To demonstrate the
vulnerability of FL to white-box inference attacks, we imple-
ment a generative adversarial network (GAN)-based approach
to reconstruct data pieces only exist in the private dataset. In
this approach, the adversary utilizes a GAN to exploit data
features by iteratively refining synthetic samples to match the
observed gradients. Ultimately, the synthetic samples share
similar features to private data pieces.

We validate the success of the attack through extensive
experiments on real-world network traffic datasets collected at
different time and from different environment. By analyzing
feature maps and multiple metrics for similarity test, we show
that the proposed reconstruction attack can successfully reveal
a large portion of the private dataset, albeit being used only in
the FL process. Furthermore, we examine the impact of intro-
ducing maliciously generated data into the federated learning
process, evaluating how it can degrade the performance of
the global model and compromise its reliability. It leads to a
possible method for detecting a malicious client.

The remainder of this paper is organized as follows. Sec. II
provides an overview of the preliminary concepts. Sec. III
describes the threat model. Sec. IV outlines the proposed data
reconstruction attack. Sec. V presents the evaluation results.
And Sec. VI concludes the paper and discusses potential
directions for future work.
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II. PRELIMINARIES
A. Al-based Network Traffic Classification

NTC refers to the process of identifying the types, sources,
or destinations of data packets transmitted across a network.
It plays a vital role in network security and management,
enabling Internet Service Providers (ISPs) to optimize resource
allocation and improve overall network efficiency. With the
increasing prevalence of encrypted traffic and the exponential
growth in data volume, machine learning-based NTC models
have become a key focus due to their efficiency and accu-
racy [15]. Recently, FL. has been applied to NTC, gaining
attention for its privacy-preserving and distributed computing
capabilities. In the FL framework, clients train models locally
using their network traffic data, and only the model parameters
are aggregated by the server, ensuring data privacy. In this
study, a Multi-Layer Perceptron (MLP) is utilized as the NTC
model because of its simplicity and effectiveness. We also
separate two distinct datasets, one serving as public data and
the other as private data. The public dataset consists of network
traffic shared publicly yet mostly out-dated. Some of the data
in this dataset is used as a pre-training resource. The remaining
portion of the dataset is accessible to all clients as their local
data in the FL framework. Each client consists of a private
dataset consisting of up-to-date network traffic data, even if
they belong to the same applications in the public dataset.
Note that the characteristics of network traffic often differ
significantly due to frequent updates of applications.

B. GAN-based Data Synthesis

Generative Adversarial Network (GAN) is a powerful tool
for generating data that is close to the real data. It consists of
two components: a Generator (G) and a Discriminator (D). G
attempts to create data that resembles the training data. D tries
to distinguish between real data from the training set and fake
data generated by the G. The G aims to minimize the D’s
ability to distinguish between real and synthetic data, while
the D attempts to maximize its accuracy, creating a dynamic
optimization problem. In federated learning, GAN can exploit
the iterative exchange of model parameters between clients

and the server to achieve an attack [16]. A malicious partic-
ipant can use the shared model parameters to infer sensitive
information about the client data.

C. White-box Attack

In federated learning, a white box attack refers to an attack
in which the attacker has complete knowledge of the model,
including its parameters and structure [7]. The primary goal
of the attacker is to exploit the gradients to infer sensitive
information about the private data. This is possible because
the gradients exchanged during training encode information
about the data. In this work, we mainly focused on the scenario
where an attacker pretends to be a participating client.

D. Similarity Test

Similarity test is a method used to detect and analyze
the effectiveness of data reconstruction attacks. It determines
whether an attack is successful or the extent of the impact by
evaluating the similarity of generated samples compared with
the original data. Six widely used metrics for similarity tests
are listed in Table I. To ensure consistency and clarity, we
define two pieces of data A and B as the inputs for all chosen
metrics for similarity test.

III. THREAT MODEL

This work adopts the threat model described in [16], which
relies on an active insider to achieve a white-box attack. In this
scenario, the model is NTC, and each local client possesses
both public and private network traffic data from some applica-
tions. Attacker O is an outsider at the beginning of the training
process. It has access to the public dataset and can access
the global model parameters. During the federated learning
process, where each client updates the model using their
private dataset, attacker O joins as a local client and launches
a data reconstruction attack. The attacking objectives are
twofold: first, to extract the private data distribution related to
the updated application, and second, to influence the learning
process in a way that coerces victims into revealing additional
information about specific targeted classes. Specifically, the
adversary operates as an insider within the privacy-preserving



collaborative learning framework while maintaining several
critical characteristics:

o The adversary aims to infer meaningful information about
private data from a certain label that has different features
from the public data.

o The adversary participates in collaborative learning only
when these labels correspond to data with features distinct
from the public data.

o The adversary deploys a local GAN while adhering to
the protocol specifications observed by legitimate par-
ticipants - including proper parameter selection, gradient
uploads/downloads.

o The adversary possesses knowledge of other participants’
label information and knows which labels are associated
with data that have features differing from the public data.

IV. PROPOSED DATA RECONSTRUCTION ATTACK
A. Federated NTC Model with Private Dataset

Before federated learning begins, a warm-up model is pre-
trained by the central server using a subset of a public dataset
to ensure initial stability in the global model. The weights of
the warm-up model are then used to initialize the global model.
During federated learning, local clients agree in advance on the
traffic classifier model and the labels of the data they possess.
The warm-up dataset is not included in any client’s training
process. Some labels are shared among clients to mitigate the
non-independent and identically distributed (non-i.i.d.) prob-
lem. Mitigation of the non-i.i.d. dataset is beyond the scope of
this work. The labels for the data being replaced with private
data do not overlap between clients. The data replacement
process intends to mimic periodic data collection in NTC
development. Without loss of generality, the global model used
in this federated learning framework is an MLP designed for
classification tasks. It consists of three main layers: an input
layer with 500 units to match the feature dimensionality of
the dataset, a hidden layer with 256 units incorporating Batch
Normalization, LeakyReLU activation (with o = 0.01), and a
Dropout layer with a rate of 0.5, followed by another hidden
layer with 32 units, also equipped with Batch Normalization,
LeakyReLLU activation, and Dropout. The output layer is
a fully connected layer with 7 units, corresponding to the
number of classes in the dataset. This model is trained using
the Adam optimizer and Sparse Categorical Crossentropy loss
to optimize classification accuracy. Other approaches can be
used as well.

B. Data Reconstruction Attack

For better illustration, the proposed data reconstruction
attack is summarized in Algorithm 1. The attacker O is
assumed to have access to the public dataset. It participates
in the federated learning process as a local client. To uncover
the private distribution of the target label from other clients,
O first removes the target label data from the public dataset
to create its own dataset. Acting as a legitimate client, O then
participates in the federated learning process and launches the
data-reconstructed attack based on a GAN. In particular, O
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Fig. 1: The proposed data reconstruction attack.

initializes the weights of the discriminator (D) in its GAN
with the weights of the global model, an overview of the data
reconstruction attack and the general structure of the GAN are
shown in Fig. 1.

Algorithm 1 The proposed data reconstruction attack.

Input: Noise dimension for GAN, target label T’
Output: Generated target data
Initialization :
: Warm-up model training using a subset of the public data;
: Set the global model to the warm-up model;
: Training Loop:
for each round r in total rounds R do
Evaluate the global model on testing data;
Check for private data replacement conditions;
if performance is consistent for m epochs and private
data replacement not completed then
Replace a batch of client data with private samples;
: end if
10:  Local client training:
11:  for each client ¢ do

AN O

o »

12: Set client model weights to global model weights;
13: Train client model on its local data;

14: if replacement is complete then

15: Attacker (O) join the federated learning;

16: Generate data of T" with the GAN;

17: Append malicious data to O’s dataset;

18: end if

19: Update client model weights;

20:  end for

21:  Aggregate client weights to update the global model;
22: end for

23: if Attack has been initiated then

24:  Evaluate generated data performance;

25: end if

The GAN structure used in this work is a conditional GAN
(cGAN) [17]. The generator (G) is designed to synthesize data



for the target label using a 100-dimensional noise vector as
input. It consists of dense layers with Batch Normalization and
LeakyReLU activations, culminating in an output layer that
matches the dimensionality of the real data (500 features). The
discriminator mirrors the architecture of the global model. By
training G to produce data that D classifies as the target label,
the cGAN effectively generates synthetic data resembling the
target class. After generating the synthetic data, O adds it to
its local dataset, mimicking the behavior of a legitimate client
with private data. By minimizing the loss of G over several
epochs, O refines the generated data to closely resemble the
real private data to the extent that it can deceive the central
classifier into categorizing it as the target private label.

V. EVALUATION RESULTS
A. Datasets and Testing Scenarios

In the evaluation, the public dataset consists of 7 classes
of data (‘Facebook’, ‘Netflix’, ‘SFTP’, ‘YouTube’, ‘Scp-
Down’, ‘Skype’ and ‘Vimeo’) randomly extracted from the
ISCXVPN2016 dataset [18]. The private dataset consists of
two classes (‘Netflix” and ‘YouTube’) collected more recently
in our lab [1, 2]. Note that the data from the same application
on a later day may not be correctly classified using the
warmed-up model due to frequent and possible updates of
protocols, codecs, and algorithms in network applications. In
the training process, data are normalized to 1. And the header
(first 24 bytes) of the data is removed.

Attacker O

‘am

... Access

Before Attack O data: 0, 2, 4-6 warm up data
Attack Begins O data: 0, 2, 4-6 warm up data;
1 or 3 reconstructed data

Central Server

Warm Up data: 0-6 from public dataset

o .

Uploads prarmeters
Client1 C; Client2 C;

Phase 1* C; data: 0, 2-6 from public dataset C, data: 0-2, 4-6 from public dataset
Phase 2 (] data: 0, 2, 4-6 from public dataset; C' data: 0, 2, 4-6 from public dataset;
3 from private dataset 1 from private dataset

* Phase 1 is before data replacement; Phase 2 is after data replacement
0-6: 'Facebook', 'Netflix', 'SFTP', "YouTube', 'ScpDown'’,'Skype’ and 'Vimeo’

Fig. 2: The evaluated attacking scenario.

The evaluated attack scenario is illustrated in Fig. 2. Two
clients, C; and (5, participate in the federated learning
process. The central server possesses 5% of the data from
the public dataset to train the warm-up model. During the
initialization phase, both clients have data from six classes
in the public dataset, which excludes the warm-up data. The
datasets of C'y and C'; are mutually exclusive. Specifically, Cy
holds data from labels 0, 2, 3, 4, 5, and 6, while C5 holds
data from labels O, 1, 2, 4, 5, and 6. Once the central model

converges, C gradually replaces its data from label 3 with
private data, and C5 does the same with its data from label 1,
mimicking the updating process with the new dataset from
updated applications, e.g., on a montly basis. The attacker
O is assumed to have access to the public dataset. When O
launches the attack, it generates data for the target label. In this
experiment, the target label is either 1 (Netflix) or 3 (YouTube)
that are in the private dataset.

B. Evaluation on the Data Reconstruction Attack

We first show the performance of the warm-up model.
As illustrated in Fig. 3, the warm-up model can provide
relatively high accuracy on the public dataset. Note that the
warm-up model needs not provide the optimal performance
as it is not useful for actual NTC. It is mainly becuase
the warm-up model cannot classify the private dataset, albeit
they carry the same labels included in the public dataset.
This discrepancy clearly demonstrates the unique challenge
in networking: updates to the application introduce changes
in data distribution, rendering the warm-up model inadequate
for handling the updated features. The sustainability of NTC
performance has been discussed in our previous work [1, 2].
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Fig. 3: Testing accuracy for private and public datasets.

Each reconstruction attack generates 500 pieces of data
to exploit a total of 1,450 pieces of data in the original
private dataset of Youtube and Netflix, respectively. We further
evaluate the Uniform Manifold Approximation and Projection
(UMAP) [19] feature maps of the public data, private data,
and reconstructed data for YouTube and Netflix. UMAP is a
feature-reduction technique for visualizing data. These feature
maps are generated using two features UMAP, with the pro-
jection performed using the correlation metric. As shown in
Fig. 4, it is evident that the features of the public data (blue
points) and original private data (orange points) are separated,
indicating that the public data has different features compared
to the private data. The features of the reconstructed private
data (green points) overlap significantly with those of the
original private data, demonstrating that the reconstructed data
effectively captures the feature characteristics of the private
data. This overlap highlights the fidelity of the reconstruction
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process in retaining the distinctive features of the private data,
leading to the success of the internal reconstruction attack.
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To better evaluate the reconstructed data, we compare the
results with the original private dataset using the similarity
metrics introduced in Sec. II-D. Before calculating the similar-
ity scores, the data are normalized to integers ranging from O to
255, as three of the metrics are designed to work with strings.
For each piece of reconstructed data, the similarity scores are
computed for the entire private dataset with the same label.
Fig. 5 and Fig. 6 present histograms of the Probability Density
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Fig. 7: MSE between the original private data and the recon-
structed private data (normalized to 1).

Function (PDF) for the highest similarity scores (except for
MSE) of all the reconstructed Netflix and YouTube private
data. The MSE metric is challenging to interpret for data
scaled between 0 and 255. Instead, the MSE metric is applied
with data normalized between O and 1. Similar histogram
plots for the highest similarity scores using the MSE metric
are shown in Fig. 7. To match the reconstructed data with
the original one, high values of Cosine Similarity, Jaccard,
Levenshtein, and Jaro-Winkler are desirable, while low values
of MSE and JS divergence are preferred. From the results,
we can see that, among the chosen similarity metrics, Cosine
Similarity, MSE, JS divergence, and Jaro-Winkler can better
measure the similarity between reconstructed and original data.
Meanwhile, Levenshtein and Jaccard are less useful, as their
character-based nature makes them highly sensitive to minor
changes in the normalized O to 1 scale, leading to significant
variations when rescaled to 0 to 255.

However, relying solely on the highest score of each similar-
ity score cannot find the original data consistently. For exam-
ple, for label 1 (Netflix) cross-referencing two metrics cosine
similarity and MSE, only 5 pieces of original private data have
the matching reconstructed data. Cross-referencing three met-
rics cosine similarity, MSE and JS divergence leaves to merely
4 pieces of original private data with the matching recon-
structed data. Cross-referencing all metrics returns zero pieces
of original private data that match with the reconstructed data.
To address this issue, we choose to cross-reference 5% data
pieces that present the highest similarity scores by each metric
for each reconstructed data. The implementation of 5% is
based on the empirical results for the chosen dataset. The
setting depends on specific testing scenarios. To ensure robust
matches, results from Cosine Similarity, MSE, JS divergence,
and Jaro-Winkler are used for cross-referencing. By doing so,
476 (out of 500) reconstructed data pieces of label 1 (Netflix)
and 459 (out of 500) reconstructed data pieces of label 3
(YouTube) can be mapped to just a few (1 to 3) original
data pieces. It means that the data reconstruction attack can
successfully extract the original data piece from the private
dataset. Fig. 8 visualizes two randomly chosen reconstructed
data samples of each label (Netflix and YouTube) and their
best match in the private dataset.

To detect the data reconstruction attack, the central server
or a legitimate user can monitor the performance of the global
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Fig. 8: Visual demonstration of the reconstructed data (left)
and its best matching original data (right).

model during federated learning. As illustrated in Fig.9, a
noticeable decrease in performance can occur when the attack
is launched in the learning process. The sudden change is due
to the rough reconstruction in the first few iterations from the
attacker 0. However, the performance is stable as the quality
of data reconstruction increases.

Test Accuracy vs. Training Count Test Accuracy vs. Training Count

ccuracy

—— Test Accuracy
—— Reconstructed Label 1 (Netflix) Test Accuracy

B oa
@
0.2 05
—e— Test Accuracy

041 —e— Reconstructed Label 3 (Youtube) Test Accuracy

Test Accuracy

[ 50 100 150 200 250 300 0 50 100 150 200 250 300
Training Count Training Count

(a) Netflix. (b) YouTube.

Fig. 9: Global model accuracy during attack vs. # epochs.

VI. CONCLUSION AND FUTURE WORKS

In this work, we proposed a data reconstruction attack on
FL-based NTC design. The proposed attack is intended to
explore if the private dataset can be truly protected with FL
only in NTC training. Evaluations were conducted using real-
world network traffic data and multiple metrics for similarity
tests. The results demonstrated that the data reconstruction
attack can be successfully launched, revealing a large portion
of the private dataset, albeit being used solely for local model
updates in the FL process. We also discovered a sudden
NTC performance decrease when the attack initiates. The
performance change may serve as an alert to flag the existence
of an internal attacker. In future work, we will explore more
robust countermeasures and provide secure methods for data
sharing with privacy preservation.
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